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Abstract Surface remodeling of biological tissues

through tissue growth or dissolution is deemed critical to

their proper functioning, and is influenced by the defor-

mation of the tissues during physiological activities. The

present work attempts to develop a constitutive framework

for deformation modulated surface remodeling of biologi-

cal tissues. The framework is developed assuming finite

deformation of the tissue, and the effect of deformation on

the driving force for surface remodeling is determined from

thermodynamic principles. The microscopic trends are

upscaled to yield the remodeling-induced change in a

macroscopic porous tissue. By way of application, the

effect of deformation on the remodeling kinetics is deter-

mined for an incompressible elastic tissue. Depending on

the ratio of the specific elastic stiffness and the specific

Gibbs energy variation induced by the cell, the effect of

deformation on the remodeling kinetics can be significant.

It is found that both tensile and compressive deformation

aid tissue dissolution (and dissuade growth). However, the

magnitude of the effect is found to be different under

tensile and compressive loadings, and critically depends on

the reference frame used for the strain measurements. For

Lagrangian strain measures (e.g., stretch, engineering

strain), the increase in the dissolution kinetics per unit

strain is higher under compressive loadings. On the other

hand, for Eulerian strain measures (e.g., logarithmic or true

strain), the effect of tensile loading on the dissolution

kinetics is higher. This reinforces the need for proper ref-

erence frame definition for experimental strain measure-

ments.

Introduction

Many biological tissues continuously undergo remodeling

(growth or resorption) during their natural life spans. For

example, about 25% of trabecular bone and 3% of cortical

bone in a mature adult is remodeled annually. The tissue

remodeling phenomena has important consequences, and is

deemed critical for a number of physiological events

including the healing of bone fracture [1–3], wound healing

in the skin [4, 5], hypertrophy of the heart (i.e., size in-

crease in muscles of an overloaded heart, [6]) and changes

of pulmonary blood vessels in hypertension [7]. The tissue

remodeling mechanism and kinetics are affected by the

tissue deformation during the remodeling process, e.g., the

contractile forces generated during skin wound contraction

is associated with scar tissue formation [8], and the

importance of in-vivo stress in bone healing is generally

accepted, though the exact nature of the effect is uncertain

[1, 9]. Thus modeling of deformation-coupled remodeling

processes in biological tissues is important.

The interaction of the remodeling characteristics and the

stress/deformation in biological tissues have been numeri-

cally examined by several investigators [10–13]. Skalak

[10] showed that residual stress may be developed due to

non-uniform (and incompatible) growth in biological tis-

sues. Hoger and co-workers [11–13] have modeled defor-

mation coupled growth by introducing a multiplicative split

of the total deformation gradient (i.e., due to both
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deformation and growth) into its elastic deformation and

growth parts, and have analyzed problems related to the

hypertrophy of the heart and growth in bones under stress.

The analysis is similar to the multiplicative split of the

elasto-plastic deformation gradient into the elastic and

plastic components in conventional finite deformation

elasto-plastic constitutive analysis (e.g., [14, 15]), and

estimate the growth phenomenon in terms of its effects on a

given set of material points (i.e., the analysis is based on a

material reference frame). On the other hand, the remod-

eling phenomenon involves growth or resorption of the

biological tissue, and thus, implicitly involves a change in

the number of material points (increase for growth,

decrease for resorption), and a continuously variable set of

material points. Hoger and co-workers have resolved this

anomaly by assuming growth to be volumetric and dis-

tributed, i.e., no volume element is destroyed or created

during the growth process, rather the existing volume

elements are extended or compressed as new material

points are added or some material points disappear. Such

an approach is effective for volumetric remodeling pro-

cesses in biological tissues. However, in surface remodel-

ing, the appearance of new material points (or the

disappearance of old ones) determine the characteristic of

the newly formed surface, and the growth process is spa-

tially discontinuous. Such situations arise in a number of

biomaterial remodeling scenarios, including trabecular

bone growth/resorption under osteoblast/osteoclast cell

action at the bone surface and wound healing in skin tissues

(which involve the adhesion of the fibroblast cells at the

surface of the skin matrix). The applicability of the mul-

tiplicative split in such situations is questionable.

Another characteristic of the trabecular bone/skin

remodeling problem deserves mention at this point. Both

bone and the skin are porous tissues, composed of struts

and pores (see Fig. 1a). The remodeling phenomenon in

these materials can be conveniently divided into two length

scales: (a) the microscale (see Fig. 1b), which is typically

at the length scale of individual struts or pores for the

porous structures, and the relevant scale for biochemical

phenomena related to remodeling processes, and (b) the

macroscale, which is at the scale length of the entire porous

tissue, and is the relevant length scale for determining the

effect of remodeling on tissue characteristics. Typically the

length scales corresponding to the micro and the macro

scale in porous biomaterials differ by one or two orders of

magnitude. For example, in porous trabecular bone, the

microscale corresponding to the size of individual trabec-

ula and individual pores are of the sizes 100–500 lm [16,

17], while the porous structure, corresponding to the scale

of the trabecular bone samples generally used in experi-

ments, is 10–100 mm in size [18]. Similarly, in problems

of growth in skin tissues, the length of individual struts and

the pore diameter is approximately 100 lm [5], while the

scaffolds used in experiments are 1–100 mm in size [5]. It

is noteworthy that in both cases, the material addition (or

removal) occurs at the lower scale length. The size of the

osteoclast cells responsible for resorption in bone is 50 lm

[19], while the fibroblast cells involved in skin growth are

20 lm in size [5]. In order to predict the effect of

remodeling (which occurs at the microscale) on the mac-

roscopic tissue characteristics, consistent upscaling

schemes need to be developed. Such upscaling may be

inconvenient when a multiplicative split of the overall

deformation gradient is assumed, since the estimation of

the macroscopic deformation and growth components of

the deformation gradient from the microscopic measure-

ments is not straightforward.

The focus of the present work is the analysis of the

remodeling phenomenon (at different length scales) in

porous biological tissues. The problem arising from the

variability of the material points in such systems is

Fig. 1 (a) The porous tissue at the macroscale, consisting of solid

struts and fluid saturated pores. The biological cells are shown

attached to the solid. (b) Schematic representation of the microscale,

where the multinucleated biological cells may attach at the surface of

the solid strut, and initiate the remodeling phenomena. The surface

area of the solid strut is As, n is the normal to the solid surface, the

solid-cell interface area is f and u is the velocity. A negative u:n at the

solid-cell interface signifies dissolution of the solid and a positive u:n
signifies growth
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circumvented by developing the theory in terms of a spatial

coordinate system. The model is developed both w.r.t. the

undeformed reference frame (i.e., at time t = t0), and the

deformed (or current) reference frame.The present model

follows the analytical lines earlier employed by Silva and

Ulm [2] for bone resorption, Lemarchand et al. [20] for

mechanically induced dissolution processes, and Ulm et al.

[21] for calcium leaching. However, the present work treats

the biochemical phenomena at finite strains (whereas

infinitesimal strain assumptions were used in the above

studies) in order to develop a model for biological tissue

remodeling, which may involve small deformations for

hard tissues (e.g., bone) and relatively large deformations

for soft tissues (e.g., skin).

Remodeling analysis at the microscale

Problem definition

The representative volume element (r.e.v) at this scale

contains a solid domain Vs and a cell attached along the

cell-solid interface f (see Fig. 1b). The mass transfer takes

place between the solid surface and the cellular fluid

around it, by deposition or dissolution of solid mass from

or into the cell fluid. The cell fluid is considered to be a

mixture (at pressure p) of a solvent and a solute (partial

pressure pi), generated by the biochemical activity of the

cell. The problem is defined in terms of the spatial coor-

dinates, in order to circumvent the difficulty of defining a

suitable material coordinate system for a problem with

continuous mass (and material points) addition or removal

at the cell-solid interface. Since concurrent deformation

and growth processes are assumed, the attachment or

removal of the material points occur in the deformed solid

configuration. Thus, the remodeling problem is initially

defined in terms of quantities measured in the deformed

configuration (i.e., current reference frame) x, and subse-

quently suitable transformation equations are used to

express these quantities in the original (i.e., undeformed)

reference frame, x.

Figure 2 shows the evolution of several field variables

across the solid-cell interface (x = n). The solid deforms

under the applied loading (external stress and fluid pres-

sure), and simultaneously undergoes mass addition (or re-

moval) at the solid-cell interface, which in turn changes the

volume of the solid. In the current configuration, the mass

addition (or removal) at the interface may be represented in

terms of velocity jump at the solid-cell interface. The

particle velocity in the solid bulk (ud) is defined by the

microscopic strain rate in the solid, d ¼ 1
2

gradðudÞ
�

þ gradtðudÞÞ, where gradtðudÞ is the transpose of the

gradient of the ud vector (i.e., gradðudÞ ¼ oud=ox). This

defines the particle velocity at any spatial point inside the

solid (approaching the solid-cell interface), and uðn�Þ ¼ ud

(see Fig. 2a). On the other hand, the solid-cell interface

velocity is defined by the rate of mass addition to (or

removal from) the solid as well as the solid strain rate. Let

the velocity component due to the mass addition/removal

be uc, defined such that uc � n > 0 (n is the outward

normal in the current configuration to the solid-cell inter-

face, see Fig. 2) for addition, and uc � n\0 for mass

removal. The velocity of the solid-cell interface uðnÞ is

defined by the sum of the two components uc and ud,

uðnÞ ¼ ud þ uc. This results in a discontinuity in the

velocity field at the solid-cell interface, and the jump in

velocity u½ �½ � is defined by

u½ �½ � ¼ uðnÞ � uðn�Þ ¼ uc ð1Þ

In case of density, the discontinuity occurs across the

solid-cell interface. The solid density at the solid side is

defined by solid mass per unit volume qsðtÞ, while that at

the cell side is the fluid mass per unit volume, qf ðtÞ.

qðtÞ½ �½ � ¼ qðnþ; tÞ � qðn�; tÞ ¼ qf ðtÞ � qsðtÞ ð2Þ

In the present work, the change in the solid density

across the interface is also significant. The solid density

jumps from qsðtÞ on the solid side to 0 in the fluid.

qsðtÞ½ �½ � ¼ qsðnþ; tÞ � qsðn�; tÞ ¼ �qsðtÞ ð3Þ

Similarly, the jump in the free energy mass-density (free

energy per unit mass) across the interface is defined by the

difference in the free energy mass-density in the cell fluid

(wi) and the solid (ws).

w½ �½ � ¼ wðnþÞ � wðn�Þ ¼ wi � ws ð4Þ

The discontinuities in the density and the free

energy mass-density are schematically shown in

Figs. 2b and c.

Preliminaries

The focus of the present work is the analysis of deforma-

tion coupled remodeling in porous biological tissues, and

the analysis is conducted in both the initial (i.e., unde-

formed) and the current (i.e., deformed) reference frames.

The analysis thus involves repeated transformation of

quantities between the two reference frames. The equations

for volume, density and surface area transformations for a

deforming material (without any growth/resorption) are

given below.
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If vsðt0Þ is the original (undeformed) infinitesimal vol-

ume of a solid, then the volume vsðtÞ after deformation is

given by

vsðtÞ ¼ jvsðt0Þ ð5Þ

where, j is the determinant of the deformation gradient f ,

defined in terms of the undeformed (X) and deformed (X)

reference frames (f ¼ GradðxÞ ¼ ox=oX). For a solid with

constant mass, the density is inversely proportional to the

volume, and the densities in the two reference frames are

related by

qsðtÞ ¼ ð1=jÞqsðt0Þ ð6Þ

The rate of change of the volume (in terms of quantities

in the undeformed configuration) can be expressed by

differentiating Eq. (5) w.r.t. time, and realizing that the

volume in undeformed configuration vsðt0Þ is independent

of time (i.e., dvsðt0Þ=dt ¼ 0).

dvsðtÞ
dt
¼ dj

dt
vsðt0Þ ð7Þ

If an infinitessimal surface area dasðt0Þ was oriented

with an unit normal n in the undeformed solid, the corre-

sponding area dasðtÞ will be oriented with the unit normal n

in the deformed solid

ndasðtÞ ¼ jðf�1Þt � Ndasðt0Þ ð8Þ

where ðf�1Þt is the inverse transpose of the deformation

gradient f .

Another important concept that is repeatedly applied in

the present work is the generalized divergence theorem,

which deals with the application of divergence theorem to

fields that exhibit discontinuities within the given domain.

For example, if the field x exhibits a discontinuity at R
within the domain V of perimeter A, then

Z

A

x � nAdA ¼
Z

V

divðxÞdV þ
Z

R
x½ �½ � � nRdR ð9Þ

where, nA and nR are outward normals at the boundary A

and the surface of discontinuity R, respectively, and x½ �½ � is
the jump in the field x across the surface of discontinuity.

Mass and volume conservation

The mass of solid (considering the solid domain, Vs in

Fig. 2) is defined by Ms, and is related to the solid density

qsðtÞ and the solid volume vsðtÞ1 by

MsðtÞ ¼
Z

MsðtÞ
dmsðtÞ ¼

Z

VsðtÞ
qsðtÞdvsðtÞ ð10Þ

The rate of change of mass is given by

dMsðtÞ
dt

¼
Z

VsðtÞ

dqsðtÞ
dt

dvsðtÞ þ
Z

AsðtÞ
qsðtÞðu � nÞdasðtÞ

ð11Þ

where AsðtÞ is the area of the solid periphery in the

deformed configuration and n is the outward normal to the

solid periphery. The velocity field u is discontinuous in the

domain VsðtÞ while the density field qsðtÞ is continuous

V(dilos s) V(llec f)

ξ - ξξ +

u u= d

u u= d u+ c

n

dilos llec

ξ - ξξ +

ρ=ρs

ρ=ρf

n

V(dilos s) V(llec f) dilos llec

ξ - ξξ +

ψ=ψs

ψ=ψf

n

V(dilos s) V(llec f)

ζ

(a) (b) (c)

Fig. 2 Schematic representation of the evolution of (a) velocity, (b)

density and (c) free energy per unit mass across the solid-cell

interface (x = n) in the current configuration. The vertical lines

corresponding to x = n– and x = n+ are infinitesimally distant from the

interface, and lie in the solid domain (Vs) and the cellular domain (Vf),

respectively. The outward normal to the solid-cell interface is

represented by n. The area of the solid-cell interface is f. The

primary purpose of this figure is to show the jump in the field

quantities across the solid-cell interface. The field quantities have

been shown constant in each of the domains (Vs and Vf) for

convenience. No such assumptions have been employed in the

analysis

1 In this work, the infinitesimal variables (e.g., dvsðtÞ) and the inte-

gration domains (e.g., VsðtÞ) have been differentiated through use of

different letters or symbols. In some cases, the same symbols have

been used to represent the physical quantities at both the micro and

the macro-scales.
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(see Eq. (1) and Fig. 2). Thus using the generalized

divergence theorem (Eq. 9) on the solid domain, the rate of

change of the solid mass can be expressed by

dMsðtÞ
dt

¼
Z

VsðtÞ

dqsðtÞ
dt
þ qsðtÞdivðudÞ

� �
dvsðtÞ

þ
Z

f tð Þ
qsðtÞ u½ �½ � � ndac tð Þ ð12Þ

where f tð Þ is the solid-cell interface area in the deformed

configuration (the infinitesimal solid-cell interface area is

given by dac tð Þ) and n is the outward normal (outward

from the solid) at the interface. The discontinuity of the

velocity field u½ �½ � is defined by uc (see Eq. 1). The above

equation contains three terms. The first two terms

dqsðtÞ=dt and qsðtÞdivðudÞ integrated over the solid

volume vsðtÞ describe the mass conservation in a

deforming solid. The last term defines the mass loss or

addition at the solid-cell interface. Considering mass

conservation in the solid bulk (i.e., neglecting diffusional

mass exchange between the growing/dissolving solid

surface and the solid bulk), i.e.,

Z

VsðtÞ

dqsðtÞ
dt
þ qsðtÞdivðudÞ

� �
dvsðtÞ ¼ 0 ð13Þ

the mass gain (or loss) is only due to the surface

contribution.

dMsðtÞ
dt

¼
Z

f tð Þ
qsðtÞuc � ndac tð Þ ð14Þ

Since the rate of mass change is invariant with the

change in configuration, the rate in the deformed and

undeformed configurations can be equated

dMsðtÞ
dt

¼
Z

f tð Þ
qsðtÞuc � ndac tð Þ ¼

Z

f t0ð Þ
qsðt0Þeuc � Ndac t0ð Þ

ð15Þ

where qsðt0Þ; euc and n are the solid density, the velocity of

the solid-cell front, and the normal to the solid-cell front, in

the undeformed configuration. The growth/dissolution

velocities in the undeformed and the deformed

configurations may be related by applying Eqs. (6, 8) to

Eq. (15).

euc ¼ f�1 � uc ð16Þ

The rate of change of the solid volume in the deformed

configuration can be derived from Eq. (12) by letting

qsðtÞ ¼ 1:

dVsðtÞ
dt
¼
Z

VsðtÞ
divðudÞdvsðtÞ þ

Z

f tð Þ
uc � ndac tð Þ ð17Þ

The first term reflects the change in volume due to the

deformation undergone by the solid, while the second term

signifies the corresponding volume increase (or decrease)

due to biological growth (or dissolution) at the solid surface.

The two activities thus can be clearly demarcated in the

deformed configuration. This demarcation is less clear in

the undeformed configuration, as evident from the volume

change rate derived applying Eqs. (7, 8, 16) to Eq. (17).

dVsðtÞ
dt
¼
Z

Vsðt0Þ

dj

dt
dvsðt0Þ þ

Z

f t0ð Þ
jeuc � Ndac t0ð Þ ð18Þ

In contrast to Eq. (17), the second term in Eq. (18),

reflecting undeformed measures, contains both the bio-

chemical (euc � N) and the mechanical (j ¼ detðf Þ) contri-

butions. The coupling arises due to the fact that Eq. (18)

measures the rate of change of current volume (i.e., volume

after coupled deformation and mass change) in the unde-

formed reference frame, and must account for the change

in density due to deformation. It may be convenient to

introduce the (Lagrangian) mass rate per unit (undeformed)

surface involved in the deposition or dissolution process,

�mc ¼ qsðt0Þeuc � N. Use of �mc in Eqs. (15, 18) yield the

Lagrangian expressions in the form

dMsðtÞ
dt

¼
Z

f t0ð Þ
�mcdac t0ð Þ ð19Þ

dVsðtÞ
dt
¼
Z

Vsðt0Þ

dj

dt
dvsðt0Þ þ

Z

f t0ð Þ
j

�mc

qsðt0Þ
dac t0ð Þ ð20Þ

Thermodynamic formulation

We are interested in the thermodynamic evolution, in an

infinitessimal time interval dt, of a material domain, which at

time t coincides with the solid domain VsðtÞ, and which at

time t + dt is composed of the solid domain Vsðt þ dtÞ and of

the solute in dV, which corresponds to the solid that dissolved

in the cell fluid. These thermodynamic evolutions are sub-

jected to the Clausius-Duhem inequality which states that for

all processes the rate of change of Helmholtz free energy (W)

is equal to (for reversible processes) or less than (for irre-

versible) the rate of external work provided to the system

(Pext), and results in a non-negative rate of dissipation D.

D ¼ Pext �
dW
dt
� 0 ð21Þ
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In the deformed configuration, the external work rate is

the sum of two terms. The first term is the work rate

developed by the traction field t ¼ r � n (with r the Cauchy

stress tensor and n the outward normal to the solid surface)

and the total solid velocity u (composed of velocities due to

deformation and chemical growth/dissolution) along the

solid surface in the deformed configuration As(t)

Pext uð Þ ¼
Z

As tð Þ
u � r � ndas tð Þ ¼

Z

Vs tð Þ
divðud � rÞdvsðtÞ

þ
Z

f tð Þ
uc � tdacðtÞ ð22Þ

where the generalized divergence theorem Eq. (9), and Eq.

(1) have been used. The last term in Eq. (22) represents the

work rate pdV, involving the fluid pressure p on the boundary

of the considered domain and the dissolved solid volume dV,

which is obtained by letting t ¼ �pn in Eq. (22)

Pext uð Þ ¼
Z

Vs tð Þ
r : ddvsðtÞ �

Z

f tð Þ
puc � ndacðtÞ ð23Þ

where d is the (symmetric) Eulerian strain rate tensor,

obtained from developing divðud � rÞ ¼ gradðudÞ : r, while

considering divr ¼ 0 and r ¼ rt in VsðtÞ. The second

contribution to Pext of the considered system arises from

the introduction (or extraction) of the solute mass dMi into

the cell-fluid, which, given mass conservation of the sys-

tem under consideration, equals with opposite sign the

change in solid mass (given by Eq. 15), i.e.,

dMs=dt ¼ �dMi=dt ¼ �qidVi, where qi is the mass density

of the reactant ions in the cell-fluid (assumed for purpose of

clarity constant in dV). The resulting work contribution is

the work rate Pi
ext ¼ pidVi developed by the partial pressure

of the solute pi along the rate of change of solute volume

dVi ¼
R

f tð ÞðqsðtÞ=qiÞuc � ndf tð Þ. The total external work

rate in the deformed reference frame thus reads

Pext ¼ Pext uð Þ þ Pi
ext ¼

Z

Vs tð Þ
r : ddvsðtÞ

�
Z

f tð Þ

p

qsðtÞ
� pi

qi

� �
qsðtÞuc � ndacðtÞ ð24Þ

In the undeformed configuration, the external work

terms can be evaluated through suitable transformation of

Eq. (24), using Eqs. (6, 8, 15, 19)2

Pext ¼
Z

Vs t0ð Þ
ðf
�

: pÞdvsðt0Þ �
Z

f t0ð Þ

jp

qsðt0Þ
� pi

qi

� �
�mcdacðt0Þ

ð25Þ

where f
�

is the rate of change of the deformation gradient,

and p ¼ jr � ðtf Þ�1
is the Boussinesq (or first Piola-Kirch-

hoff) stress tensor.

The change of the Helmholtz free energy of the system

under consideration is due to the change of the free energy,

between t and t + dt, in the solid bulk and along the surface

of discontinuity. Expressed in terms of the specific free

energies, this change in the deformed reference frame is

given by

dW
dt
¼
Z

Vs tð Þ
qsðtÞ

dws

dt
dvsðtÞ �

Z

f tð Þ
ðwi �wsÞqsðtÞuc � ndac tð Þ

ð26Þ

where wi and ws are the free energy per unit mass of the

solute ions (in the cell fluid) and the solid, respectively.

While the first term in Eq. (26) is classical, the second

term expresses the spontaneous change at the solid-cell

interface, induced by w½ �½ � ¼ wi �ws which can be

interpreted as the discontinuity in Eq. (4) in free

energy per unit mass between the solute in the cell

fluid (wi) and the solid phase (ws). The Lagrangian

counterpart of Eq. (26) is readily obtained using Eqs. (5,

6, 15, 19)

dW
dt
¼
Z

Vs t0ð Þ
qsðt0Þ

dws

dt
dvsðt0Þ �

Z

f t0ð Þ
ðwi � wsÞ�mcdac t0ð Þ

ð27Þ

Finally, using Eqs. (24, 26) in Eq. (21) yields the

Eulerian expression of the dissipation rate

D ¼
Z

Vs tð Þ
r : d � qsðtÞ

dws

dt

� �
dvsðtÞ

þ
Z

f tð Þ
ðgi � wsÞ �

p

qsðtÞ

� �
qsðtÞuc � ndac tð Þ� 0 ð28Þ

where gi ¼ wi þ pi=qi is the Gibbs potential or free mass

enthalpy (per mass unit) of the solute (ions in the solution

of the cell fluid). Analogously, Eqs. (25) and (27) yield the

Lagrangian counterpart

D ¼
Z

Vs t0ð Þ
f
�

: p� qsðt0Þ
dws

dt

� �
dvsðt0Þ

þ
Z

f t0ð Þ
ðgi � wsÞ �

jp

qsðt0Þ

" #

�mcdac t0ð Þ� 0 ð29Þ
2 Using gradð:Þ ¼ Gradð:Þ � f�1 and p ¼ jr � ðt f�1Þ, divðud � rÞ ¼
1
j GradðudÞ � f�1
h i

: p �t f
h i

¼ 1
j f
�

: p
� �

: Given that dvsðtÞ ¼ jdvsðt0Þ,
R

VsðtÞ divðud � rÞdvsðtÞ ¼
R

Vsðt0Þ f
�

: p
� �

dvsðt0Þ.
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The first integral (the volume integral) in these two

expressions of the Clausius-Duhem inequality represents

the intrinsic dissipation rate in the solid bulk. It is of the

standard format classically employed in continuum

mechanics. Assuming elastic deformation in the solid bulk,

and thus zero dissipation, the terms simply signify that the

rate of change of elastic energy in the bulk is governed by

the stress–strain work. More generally, in the absence of

bio-chemical processes at the solid-cell surface (i.e.,

uc � n ¼ 0, �mc ¼ 0), it represents the amount of exter-

nally supplied energy which is not stored in the solid

microstructure, but dissipated into heat form. Given its

intrinsic nature, associated with solid deformation, it may

be assumed to be non-negative irrespective of the phe-

nomena at the solid-cell surface. Consequently, the dissi-

pation associated with the resorption process which is

captured by the surface integrals in Eqs. (28) and (29),

must be non-negative as well, i.e.,

uf tð Þ ¼ ðgi � wsÞ �
p

qsðtÞ

" #

qsðtÞuc � n� 0 ð30Þ

uf t0ð Þ ¼ ðgi � wsÞ �
jp

qsðt0Þ

" #

qsðt0Þeuc � N� 0 ð31Þ

In contrast to the volumetric dissipation in the solid

bulk, the dissipation rate uf tð Þ is a surface dissipation rate

density (of dimension uf tð Þ

h i
¼ MT�3). Following stan-

dard thermodynamic arguments, expressions Eqs. (30) and

(31) may be used to formally identify the term

ðgi � wsÞ � p=qsðtÞ as the driving force of the influx (in the

case of mass deposition) or the outflux (in the case of

dissolution) of solid mass per unit surface occupied by

cells, which is expressed by qsðtÞuc � n in the deformed

configuration, and �mcðt0Þ ¼ qsðt0Þeuc � N in the undeformed

configuration. It is convenient to distinguish in ws the en-

ergy associated with elastic deformation of the solid from

those related to the chemical composition of the solid, by

considering ws ¼ wel
s þ gs, where wel

s is the elastic free

energy and gs is the chemical potential per unit solid mass.

Furthermore, the dissipation expressions may be rewritten

in terms of the molar flux J ¼ qsðtÞ=Mð Þuc � n in Eq. (30)

and eJ ¼ qsðt0Þ=Mð Þeuc � N in Eq. (31), where M is the

molar mass, and M=qsðtÞ and M=qsðt0Þ the molar vol-

umes of the solid in the deformed and reference configu-

rations

uf tð Þ ¼ A � J� 0; uf t0ð Þ ¼ A� eJ � 0 ð32Þ

where A is the so-called chemical affinity (see [22, 23])

here of the cell-mediated biochemical reaction.

A ¼Mðgi � gsÞ �M wel
s þ

p

qsðtÞ

� �
ð33Þ

From Eqs. (30–33) it is apparent that a positive affinity

encourages mass addition or surface growth

(uc ¼ uc � n� 0), while a negative driving force encourages

mass removal or dissolution at the solid-cell surface

(uc� 0). This is readily seen for an undeformed solid

phase, for which uf tð Þ ¼ uf t0ð Þ, and for which, following

chemical thermodynamics, the first termMðgi � gsÞ in Eq.

(33) is identified as the Gibbs energy variation per mole;

that is the difference between the chemical potential of the

dissolved ions in the cell fluid, which is controlled by the

cell, and which is therefore conveniently referred to as

biologically generated potential lBGP [2], and the chemical

potential of the same substance bound in the solid phase ls

(which in turn is related to the solubility product of the

solid). In this case, the chemical affinity coincides with the

Gibbs energy variation (see e.g., [24]), i.e.,

A0 ¼ lBGP � ls. Thus, ðlBGP � lsÞ> 0 is expected to

encourage growth at the solid surface, as evident from the

non-negativity of the dissipation. Similarly, for a deform-

able medium, cellular fluid pressure and/or elastic defor-

mation in the solid will encourage mass dissolution at the

solid surface. Adopting the stated link between the Gibbs

potential gi and the biological generated potential lBGP for

constant solute pressure and temperature (for which

gi = const), the biochemical affinity becomes

A ¼ lBGP � ls �
M

qsðtÞ
vel

v þ p
� �

ð34Þ

where vel
v ¼ qsðtÞwel

s is the elastic energy per unit current

volume, while M=qsðtÞ is the current molar volume.

Denoting by evel
v ¼ qsðt0Þwel

s and M=qsðt0Þ the elastic

energy per unit volume and the molar volume, respectively,

in the undeformed configuration, the driving force can be

expressed in Lagrangian variables.

A ¼ lBGP � ls �
M

qsðt0Þ
evel

v þ jp
� �

ð35Þ

Finally, following standard thermodynamics, the iden-

tification of affinity A as the driving force of the bio-

chemical growth/dissolution at the solid surface, (which

qualitatively defines the effect of the different components,

e.g., pressure, deformation and biochemical potential dif-

ference, on the growth/dissolution tendency at the solid

surface) leads to the definition of the kinetics of the growth/

dissolution process by a constitutive equation relating the

driving force (A) to the molar flux in the deformed con-

figuration J ¼ J Að Þ, or in the undeformed configuration
eJ ¼ eJ Að Þ. The simplest form of such a growth/dissolution
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law that satisfies the non-negativity of the local dissipation

in Eq. (32) is a linear form which captures, similar to a

discrete Fick’s Law, the diffusion of the ionic species

between the solid and the cellular fluid.

A ¼ k
M

qsðtÞ

� �
J � ek

M
qsðt0Þ

� �
eJ ð36Þ

Or equivalently,

A ¼ kuc � ekeuc ð37Þ

where uc ¼ uc � n and euc ¼ euc � N. The diffusion

coefficient k (of dimension k½ � ¼ LMT�1mole�1) is

primarily governed by the diffusion mechanism in the

deformed configuration, and is independent of the factors

governing the driving force A, i.e., pressure, deformation

and biochemical potential difference. In return, the

diffusion coefficient ek in the reference configuration

takes into account the change of orientation of the solid

surface due to deformation. The two expressions for the

diffusion coefficients k and ek can be related by using Eqs.

(16, 37)

ek
k
¼ n � f � N�1 ð38Þ

Finally, it should be noted that surface curvature effects

have been neglected in our derivation. The surface curva-

ture affects both the dissolution kinetics, as well as the

solid stress state, because of the associated stress discon-

tinuity at the solid-fluid interface (term of the form

r
h ih i

� n ¼ �cjn, where j is the mean curvature of the

solid-cell surface3, and c is the surface energy per unit area,

of dimension MT–2). This stress discontinuity would enter

through Eq. (22) the energy derivation, and would ulti-

mately lead to an effect of this curvature term on the dis-

solution kinetics in a similar way as the fluid pressure.

Indeed, it suffices to replace p in Eqs. (34, 35) by an

effective pressure p0 ¼ pþ cj. It is no surprise, then, to

confirm that a high positive (i.e., outward) curvature of a

solid surface leads to a higher dissolution rate, as it has

been recognized in skeletal tissue mechanics [25].

Application to porous media

Porosity change

At the microscopic scale, the formulation analyzed defor-

mation coupled remodeling of a single strut of the porous

biological tissue. At the macroscale, the primary objective

is to determine the effects of the remodeling processes

(which occurs at the microscale) on variables that are rel-

evant at the scale of the porous material. At this scale, the

r.e.v is composed of the solid domain (VsðtÞÞ and the fluid

domain (Vf ðtÞÞ; which occupies in the current configuration

the volume Vf tð Þ ¼ V tð Þ � VsðtÞ; V tð Þ being the volume of

the porous tissue. The ratio of the current fluid volume over

the total initial volume of the r.e.v V(t0) is referred to as the

Lagrangian porosity, and its rate of change is defined as

d/
dt
¼ 1

Vðt0Þ
dVðtÞ

dt
� dVsðtÞ

dt

� �
ð39Þ

Using VðtÞ ¼ JVðt0Þ (where J is the determinant of the

macroscopic deformation gradient F) and defining

dVsðtÞ=dt by the upscaled version of Eq. (18), Eq. (39) can

be rewritten as

d/
dt
¼ 1

Vðt0Þ
Vðt0Þ

dJ

dt
�
Z

Vsðt0Þ

dj

dt
dvsðt0Þ�

Z

f t0ð Þ
j~uc �Ndac t0ð Þ

 !

ð40Þ

where Vsðt0Þ is now the total solid volume in the porous

material, and f t0ð Þ is the total cell-solid interaction

surface (for the entire porous tissue being considered),

both expressed in the undeformed configuration.

Expressing the volume average of the rate of change

of j by dj
dt

	 

, i.e.,

R
Vsðt0Þ

dj
dtdvsðt0Þ¼Vsðt0Þ djs

dt

	 

Vsðt0Þ, Eq. (40)

can be reduced to

d/
dt
¼ dJ

dt
� csðt0Þ

dj

dt

� �

Vsðt0Þ
� 1

Vðt0Þ

Z

f t0ð Þ
j~uc � Ndac t0ð Þ

ð41Þ

or equivalently, using the upscaled version of Eq. (20),

d/
dt
¼ dJ

dt
� csðt0Þ

dj

dt

� �

Vsðt0Þ
� 1

Vðt0Þ

Z

f t0ð Þ
j

�mc

qsðt0Þ
dac t0ð Þ

ð42Þ

where csðt0Þ ¼ Vsðt0Þ=Vðt0Þ is the solid volume fraction in

the undeformed porous material, and �mc ¼ qsðt0Þeuc � N is

the mass rate per unit (undeformed) surface involved in the

cell-mediated deposition or dissolution process. The first

and second terms in Eqs. (41) and (42) represent the con-

tribution of pure mechanical deformation (the entire porous

material and the solid phase, respectively) to the change in

porosity, and are the classical terms employed in the

Biot-Coussy theory of porous media [22]. The third term

signifies the contribution of the biochemical growth/dis-

solution process, amplified by deformation.
3 2j ¼ 1=R1 þ 1=R2, with R1 and R2 the radius of curvature at the

major and minor axis of the solid-cell surface.
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Dissipations

For upscaling of the Clausius-Duhem inequality from the

micro-scale of the solid (see Eq. 29) to the macro-scale of the

porous continua, the r.e.v in the macro-scale (consisting of

the porous tissue, as shown in Fig. 1a) is considered to be

subjected at the external boundary oVðt0Þ to a uniform

velocity boundary condition, and at the fluid–solid interface,

i.e., along oVf ðtÞ, to a uniform pore fluid pressure p. The

presentation is inspired by the derivation of Biot’s porome-

chanics theory by Dormieux et al. [26]. For purpose of

analysis, the boundary of the r.e.v oVðt0Þ is assumed to be

located in the solid domain, so that the fluid domain is sur-

rounded by solid. In this case, the boundary conditions read

oV t0ð Þ : ud ¼ _F � X ð43Þ

oVf ðtÞ : t ¼ �pn ð44Þ

where _F is the macroscopic deformation gradient rate, ud

denotes the microscopic velocity field in the solid phase

that leads to deformation, and n is the unit normal vector

oriented outward with respect to the solid at the fluid–solid

interface. The macroscopic counterpart of Eq. (22) then is

the sum of two work rate terms provided to the solid phase:

1. The work rate developed by the surface tractions p � N
and the velocity ud prescribed on oV t0ð Þ in the refer-

ence configuration. Given the uniform boundary con-

dition Eq. (43), this term can be developed with the

help of the Hill Lemma (see Appendix)

Pext ud
� �

¼
Z

oV t0ð Þ
ðud � pÞ � Nbdaðt0Þ ¼ _F : P

� �
Vðt0Þ

ð45Þ

where Nb is the unit outward normal vector to oV t0ð Þ,
and P ¼ p

D E

Vðt0Þ
is the macroscopic Boussinesq ten-

sor, that is the volume average of the microscopic tensor

p over the total volume of the porous medium Vðt0Þ.
2. The work rate developed by the uniform pore pressure

p and the rate of volume change dVf =dt ¼
�
R

oVf ðtÞ u � nda tð Þ (composed of the volume change

due to deformation and chemical growth/dissolution)

along the solid-fluid interface. Since the fluid-surface

interface is entirely surrounded by the solid phase, the

corresponding volume change equals the change in

pore space. Hence, with Eq. (39)

p
dVf

dt
¼ p

d/
dt

Vðt0Þ ð46Þ

Finally, if we add to the two contributions, given by Eqs.

(45, 46), the additional work rate related to the introduction

(or extraction) of the solute mass dMi into the cell-fluid, we

obtain the macroscopic counterpart of Eq. (25).

Pext ¼ Vðt0Þ _F : Pþ p
d/
dt

� �
þ
Z

f t0ð Þ

pi

qi

� �
�mcdacðt0Þ

ð47Þ

Or equivalently, using Eq. (42), Eq. (47) can be

rewritten as

Pext ¼ Vðt0Þ _F : Pþ p
d/�

dt

� �

�
Z

f t0ð Þ

jp

qs t0ð Þ
� pi

qi

� �
�mcdacðt0Þ ð48Þ

where d/�=dt stands for the change in Lagrangian porosity

in the absence of mass addition or removal processes.

d/�

dt
¼ dJ

dt
� csðt0Þ

dj

dt

� �

Vsðt0Þ
ð49Þ

Equation (48) expresses the work rate provided to the

solid phase. Indeed, it is nothing but an application of Eq.

(25) using the boundary conditions given by Eqs. (43, 44).

The associated change of the Helmholtz free energy in the

solid phase is given by the upscaled version of Eq. (27).

Assuming the solid chemical potential (gs) is invariant with

time (dgs=dt ¼ 0), and using Eq. (33), the rate of change of

Helmholtz free energy at the macroscopic scale can be

rewritten in the form

dW
dt
¼ Vðt0Þcsðt0Þ

devel
v

dt

� �

Vsðt0Þ

�
Z

f t0ð Þ

A
Mþ

jp

qs t0ð Þ
� pi

qi

� �
�mcdac t0ð Þ ð50Þ

where evel
v is the microscopic elastic energy volume-density,

measured in the undeformed configuration. Finally, using

Eqs. (48, 50) in Eq. (21) yields the Clausius-Duhem

inequality at the macroscopic scale (in the undeformed

reference frame)

D ¼ Dm þDc� 0 ð51Þ

where, Dm, denoting the rate of dissipation due to

mechanical factors, and Dc, the rate of dissipation

primarily due to growth/dissolution (but including the

coupled terms), are respectively given by
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Dm ¼ Vðt0Þ _F : Pþ p
d/�

dt
� csðt0Þ

devel
v

dt

� �

Vsðt0Þ

 !

ð52Þ

Dc ¼
Z

f t0ð Þ
A �mc

M

� �
dacðt0Þ ð53Þ

Equation (52) is the standard form of the mechanical

dissipation associated with the pure (finite) deformation

of the solid phase of a porous material, as described by

the classical Biot theory. The additional dissipation

caused by the biological activity of cells attached to the

solid surface is captured by Eq. (53), where A is the

affinity defined in various forms and configurations by

Eqs. (33–35): it is the driving force of the mass depo-

sition or dissolution flux �mc and of the associated solid

growth uc � n or euc � N. Provided the value of the affin-

ity is known, the rate of the biological mediated mass

removal can be determined from kinetics laws, such as

Eqs. (36, 37), and the resulting change of the porosity

and the overall solid behavior can be evaluated.

Example of deformation coupled remodeling

The effect of imposed deformation on the dissolution rate

at the surface of a cylindrical strut at the microscale is

explored in this section. The surface of the solid strut may

be assumed to be smooth and the curvature effect on the

dissolution rate is neglected. For an undeformed solid, the

growth velocity is uc
0, the corresponding biochemical

affinity is A0 ¼ lBGP � ls, and the solid volume is V0.

From Eq. (37),

A0 ¼ kuc
0 ð54Þ

The solid subsequently undergoes uniaxial deformation.

Assuming the solid (a soft biological tissue) to be an

incompressible isotropic Hookean material, the change in

the elastic energy density may be written as (following

[27])

Devel
v ¼

E

4ð1þ mÞ ðIk � 3Þ ð55Þ

where E is the elastic modulus and m the Poisson’s ratio for

the isotropic biological tissue, and Ik ¼ k2
1 þ k2

2 þ k2
3; k2

1,

k2
2, k2

3 being the eigenvalues of the symmetric Cauchy

dilatation tensor (C ¼ f t � f ). Assuming that the fluid

pressure (p) and the biochemical potential term

(lBGP � ls) are insensitive to the imposed deformation,

the driving force for growth/dissolution in the deformed

solid is given by (see Eq. 35)

A ¼ A0 �
M

qsðt0Þ
evel

v ð56Þ

Normalizing both sides of Eq. (56) by A0, and using

Eqs. (37, 54, 55), the dissolution velocities in the

deforming and the undeformed solid can be related by

uc ¼ uc
0 1� EM

A0qsðt0Þ

� �
ðIk � 3Þ
4ð1þ mÞ

� �
ð57Þ

For uniaxial deformation (in x1-direction) of an incom-

pressible tissue, m ¼ 0:5, and Ik is given by4

Ik ¼ k2
1 þ 2k�1

1 .

Physically, k1 is an eigenvalue of
ffiffiffiffi
C

p
and the stretch of

a material element in the uniaxial loading direction. Thus,

Eq. (57) can be rewritten in a dimensionless form

uc

uc
0

¼ 1� EM
A0qsðt0Þ

� �
k2

1 þ 2k�1
1 � 3

6
ð58Þ

The dimensionless number E ¼ EM=A0qsðt0Þ is the

ratio of the specific elastic modulus of the soft biological

tissue (E=qsðt0Þ) and the specific affinity (A0=M) of the

biochemical process that takes place at the solid-cell

interface, and may be considered as a measure of the rel-

ative importance of the elastic deformation vis-a-vis the

pure biochemical driving force on the overall remodeling

kinetics. Estimation of E for soft tissues is unavailable to

the best of our knowledge. However, E for dissolution in

hard-tissues (bone) may be estimated from the work of

Silva and Ulm [2] (qsðt0ÞA0=M	 �31 MPa), and Rho

et al. [28] (E 	 17 GPa), which yields E 	 �548 for bone

dissolution (This value may still be higher if one considers

the stiffness of the hydroxyapatite crystals that build up the

ultrastructure of bone; see e.g., [17]). Figure 3a shows the

normalized dissolution velocities (uc=uc
0) for E values

ranging from –1 to �1; 000, for stretch ratios raging from

0.5 to 2 (i.e., engineering strains from –0.5 (compression)

to + 1.0 (tension)). It is evident that both compressive and

tensile deformation of the solid enhance the dissolution

rate, at all E values. The effects, as expected from Eq. (58),

increase with increasing Ej j. Quantitatively, the effects of

compressive and tensile deformations on the dissolution

rate are dissimilar, and the rate of dissolution rate

enhancement (per unit stretch or engineering strain) is

larger under compressive loading. It should however be

noted that the dissolution enhancement effect is relative to

the chosen strain measure; here the stretch—a Lagrangian

strain measure. This trend is inverted if an Eulerian strain

4 For an incompressible solid, the third invarient of the Cauchy

dilatation tensor k2
1k

2
2k

2
3 ¼ 1. For uniaxial deformation in an isotropic

solid, k2 ¼ k3. Thus, k2
2 ¼ k2

3 ¼ k�1
1 , and k2

1 þ k2
2 þ k2

3 ¼ k2
1 þ 2k�1

1 .
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measure is employed, such as the true (logarithmic) strain

which is related to the (Lagrangian) stretch by �ln ¼ ln k1ð Þ.
The results displayed in Fig. 3b indicate, for the same

value of �ln
�� ��, a higher dissolution rate enhancement in

tension than in compression. This underscores the necessity

to specify (both theoretically and experimentally) the ref-

erence frame (Lagrangian or Eulerian) used for measuring

field quantities.

Conclusion

The present work attempts to develop an integrated anal-

ysis for deformation coupled surface remodeling in porous

biomaterials. In such materials (examples include trabec-

ular bone and skin), the biochemical phenomenon related

to remodeling (growth/dissolution) occurs at a microscopic

scale and estimation of its effect on the tissue level

(macroscopic) properties is important. In the present work,

the remodeling and deformation (at the microscale) in the

biological tissues is modeled through development of

suitable equations for mass, volume and the relevant

thermodynamic quantities for the growing solid, which are

then upscaled to yield the macroscopic effects. The equa-

tions are developed assuming a spatial reference frame, to

circumvent the problems of defining a suitable material

reference frame for growth/dissolution processes, charac-

terized by a continuous change in the number of material

(and mass) points. The analysis examined the effects of

different field quantities on the growth/dissolution potential

of the solid-cell interface. A positive pressure of the cel-

lular fluid and deformation of the solid was observed to

encourage solid dissolution (and tissue resorption), while

an increase in the chemical potential of the dissolving ions

(compared to their potential in the solid) was observed to

encourage tissue growth. The microscopic equations were

upscaled to yield the tissue characteristics (e.g., change in

Lagrangian porosity) at the macroscale. A numerical

example on the effect of deformation on the dissolution

rate for an incompressible soft tissue showed that the rate

increased for both tensile and compressive deformations.

The change of the dissolution rate (per unit strain) de-

pended on the strain measure. For Lagrangian measures

(e.g., stretch), the rate increase per unit strain was higher

under compressive loading than under tensile loading. On

the other hand, the rate increase per unit strain was higher

under tensile deformation when an Eulerian measure (e.g.,

true strain) was used.
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Appendix: Hill Lemma

This demonstration of the Hill Lemma is inspired by the

presentation of Zaoui [29]. We denote by p and _f the

microscopic Boussinesq tensor which (in the absence of

body forces) satisfies Divp ¼ 0 in V(t0), and the micro-

scopic deformation gradient rate tensor _f ¼ GradðuÞ. If,

either _f satisfies a uniform deformation boundary condi-

tion, or p a uniform traction boundary condition, then
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Fig. 3 Representation of the normalized dissolution velocity varia-

tion for different soft biological tissues under uniaxial loading, in (a)

Lagrangian and (b) Eulerian strain measures. The Lagrangian

measure of tissue deformation is defined by the stretch in the loading

direction (stretch = (final length)/(initial length)). This signifies

compression for stretch <1 and tension for stretch >1. The Eulerian

deformation measure is defined by the true strain in the loading

direction (natural log of stretch), signifying compression for negative

true strain and tension for positive strain. The tissue properties are

characterized by E, which signifies a ratio of the elastic deformation

energy and the biochemical energy for the tissue remodeling (see text)
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_f : p
D E

Vðt0Þ
¼ _f
D E

Vðt0Þ
: p
D E

Vðt0Þ
¼ _F : P ð59Þ

(1) Consider the r.e.v V subjected to a uniform velocity

boundary condition

on oV t0ð Þ : u ¼ _F � X ð60Þ

where _F represents the deformation rate of the r.e.v at the

macroscopic scale, while u is defined at the microscopic

scale. The work rate provided to the r.e.v by the surface

traction t ¼ p � n in the undeformed configuration reads (in

components)

P ¼
Z

oV t0ð Þ
uitida t0ð Þ ¼ _Fij

Z

oV t0ð Þ
XjpikNkda t0ð Þ ð61Þ

Application of the divergence theorem yields, for any

stress field pik that satisfies pik;k ¼ 0 (that is Divp ¼ 0)

yields

Z

oV t0ð Þ
XjpikNkda t0ð Þ ¼

Z

V t0ð Þ
ðXjpikÞ;kdv t0ð Þ

¼
Z

V t0ð Þ
ðpikdjk þ Xjpik;kÞdv t0ð Þ

¼
Z

V t0ð Þ
pijdv t0ð Þ ð62Þ

Thus, inputing pij

	 

V t0ð Þ¼ Pij in Eq. (61)

P ¼ V t0ð Þ _FijPij ¼ V t0ð Þ _F : P ð63Þ

(2) Consider the r.e.v subjected to a uniform traction

boundary condition

on oV t0ð Þ : t ¼ p � N ¼ P � N ð64Þ

where P is the macroscopic Boussinesq tensor, while t is

the microscopic stress vector (defined on the undeformed

configuration). The work rate is developed in the form:

P ¼
Z

oV

uitidA ¼
Z

oV

uipijNjdA ¼
Z

oV

uiNjdA Pij ð65Þ

Application of the divergence theorem yields

Z

oV

uiNjdA ¼
Z

oV

uidjkNkdA ¼
Z

V t0ð Þ
ðuidjkÞ;kdV t0ð Þ

¼
Z

V t0ð Þ
ui;kdjkdV t0ð Þ ¼

Z

V t0ð Þ
_f ijdV t0ð Þ ð66Þ

Again, inputing _f ij

	 

V t0ð Þ
¼ _Fij in Eq. (65)

P ¼ V t0ð Þ _FijPij ¼ V t0ð Þ _F : P ð67Þ
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